Reg. No.:

Name :

Sixth Semester B.Tech. Degree Examination, April 2014 (2008 Scheme)

08.603 : CONTROL SYSTEMS (T)

Time: 3 Hours

Answer all questions:

- 1. The Laplace transform of error signal of a control system is characterised by $E(s) = R(s) \frac{S}{S^2 + 8S + 40}$. Calculate the steady state value of error if r(t) = t.
- 2. The impulse response of a system is given by $g(t) = e^{-t}(1-\cos 2t)$. Determine the transfer function of the system.
- 3. Obtain the ratio X_4/X_1 if the SFG is

- 4. How stability is determined using Routh-Hurwitz criteria?
- 5. A unity feed back system has an open-loop transfer function

$$G(S) = \frac{K}{S(S^2 + 4S + 13)}$$

Find

- a) Centroid and angle of asymptotes.
- b) Angle of departure from the poles.
- State Nyquist criteria for stability. Define gain margin and phase margin with respect to Nyquist plots.

- 7. State the advantages of state space representation.
- 8. Define Eigen values of a vector. Obtain the eigen values for a square matrix

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}.$$

- 9. Name the various controllers used. Obtain the transfer function of the controllers.
- State the advantages of digital control system. State at least one example.
 (10×4=40 Marks)

PART-B

Answer any 2 questions from each Module:

Module - 1

11. a) The open loop transfer function of a unity feedback system is

$$G(S) = \frac{K(S+3.15)}{S(S+1.5)(S+0.5)}$$
. Determine the type and order of the system.

Find all the error coefficients and steady state errors corresponding to it.

b) A unity feedback system is characterised by a loop transfer function

$$\frac{K}{S(S+10)}$$
. Find the value of K, so that the system will have a damping ratio 6.5. Obtain settling time, peak overshoot for a unit step input.

- 12. Obtain the state space representation of a dc armature controlled motor.
- 13. For the rotational system shown in figure. Find the transfer function $\frac{Q_2(s)}{T(s)}$

Given $J_1 = 1 \text{kg} - \text{m}^2 \text{K}_1 = \text{K}_2 = 1 \text{ Nm/rad B}_2 = 1 \text{Nm/rad/sec}$.

5

5

10

Module - 2

- 14. Draw the Nyquist plot and investigate the stability. The open loop transfer function is given by $G(S) H(S) = \frac{K}{(S+1)(S+2)}$.
- 15. Sketch the Bo de plot for the open-loop transfer function $\frac{200 (S+2)}{S(S^2+10S+100)}$.

 Is the system stable ? Give reasons for the answer.
 - 16. Sketch the root locus plot for a negative feedback system having an open-loop transfer function $G(S) H(S) = \frac{K(S+9)}{S(S+2)(S+4)} K \ge 0$. Find the range of K for closed loop stability.

Module - 3

17. Solve for X(t) using the state equation given below:

$$\dot{X}(t) = \begin{bmatrix} 0 & 1 \\ -8 & -6 \end{bmatrix} \ X(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \ u(t) \ .$$

$$X[0] = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 u(t) = unit step function.

- 18. What is lag compensation? Draw a lag network and derive its design equations. 10
- 19. A system is described by

$$\dot{X} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

 $Y = [1 \ 0]u$.

Check the controllability and observability of the system.

10

10

10